Level 7 -
Solving some of the most complex engineering challenges by organising all the information needed to understand the whole problem, exploring it and finding the most appropriate solution.
Reference: OCC0107
Status:
SOC 2020 sub unit groups:
Atkins, Altran, BAE Systems, Cobham, General Dynamics, INCOSE UK, Marshall, MBDA, MoD DE&S, MoD Dstl, MooD International, QinetiQ, Raytheon, Rolls-Royce, Selex ES, Serco, Thales
Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. The occupation is found in any sector where complex engineered systems are defined, developed and/or operated; some examples are transport (e.g. rail, aviation, automotive, maritime), defence & security, telecommunications, health, manufacturing, construction, and infrastructure. Systems Engineers are found in all parts of the supply chain from Small Medium Enterprises (SMEs) to multi-national businesses, and in commercial and public sector organisations. The broad purpose of Systems Engineering is to create and execute an interdisciplinary process to ensure that the customer and stakeholder's needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system's entire life cycle. Systems Engineers integrate multiple technological elements in complex systems that, in the case of socio-technical systems, may also include organisational elements and human interactions. Socio-technical systems include requirements that span hardware, software, personnel, and community aspects (e.g. a rail network includes human considerations at many different levels). In their daily work, an employee in this occupation interacts with project managers or personnel from business development and/or sales functions. They may assemble and manage teams of domain specialists (such as mechanical, electrical, electronics, software engineers, etc.) and subject matter experts in specific technology or scientific areas. A Systems Engineer will often work in a customer-facing role ensuring that the system meets customer and user needs and preferences, often with responsibility for technical and business communication. Mostly the occupation is office-based, although site visits may be needed during implementation of designed systems. An employee in this occupation will be responsible for overall technical management and coordination within a programme or project and contribute to safety, security and quality of outputs. They may be responsible for specific processes within the lifecycle as, for example, a Requirements Engineer, Systems Architect, or Integration Engineer. For larger programmes or projects, Systems Engineers will typically be responsible for staff and budgets. Jobs typically held by individuals undertaking this occupation include Lead Engineer, Project Engineer, Technical Lead, Acquisition Engineer; Systems Engineer; Test Engineer; Requirements Engineer; Requirements Manager, Systems Architect, Systems Designer, Systems Analyst, Engineering Manager, Systems Specialist, Technical Manager, in-service Engineer, Through-life Systems Engineer, Operation and Support Engineer, Acceptance Engineer, Integration Engineer, Interface Manager.
Atkins, Altran, BAE Systems, Cobham, General Dynamics, INCOSE UK, Marshall, MBDA, MoD DE&S, MoD Dstl, MooD International, QinetiQ, Raytheon, Rolls-Royce, Selex ES, Serco, Thales
This occupational progression map shows technical occupations that have transferable knowledge and skills.
In this map, the focused occupation is highlighted in yellow. The arrows indicate where transferable knowledge and skills exist between two occupations. This map shows some of the strongest progression links between the focused occupation and other occupations.
It is anticipated that individuals would be required to undertake further learning or training to progress to and from occupations. To find out more about an occupation featured in the progression map, including the learning options available, click the occupation.
Progression decisions have been reached by comparing the knowledge and skills statements between occupational standards, combined with individualised learner movement data.
Engineering and manufacturing